Sketch-based Querying of Distributed Sliding-Window Data Streams

نویسندگان

  • Odysseas Papapetrou
  • Minos N. Garofalakis
  • Antonios Deligiannakis
چکیده

While traditional data-management systems focus on evaluating single, adhoc queries over static data sets in a centralized setting, several emerging applications require (possibly, continuous) answers to queries on dynamic data that is widely distributed and constantly updated. Furthermore, such query answers often need to discount data that is “stale”, and operate solely on a sliding window of recent data arrivals (e.g., data updates occurring over the last 24 hours). Such distributed data streaming applications mandate novel algorithmic solutions that are both timeand space-efficient (to manage high-speed data streams), and also communication-efficient (to deal with physical data distribution). In this paper, we consider the problem of complex query answering over distributed, high-dimensional data streams in the sliding-window model. We introduce a novel sketching technique (termed ECM-sketch) that allows effective summarization of streaming data over both time-based and count-based sliding windows with probabilistic accuracy guarantees. Our sketch structure enables point as well as inner-product queries, and can be employed to address a broad range of problems, such as maintaining frequency statistics, finding heavy hitters, and computing quantiles in the sliding-window model. Focusing on distributed environments, we demonstrate how ECM-sketches of individual, local streams can be composed to generate a (low-error) ECM-sketch summary of the order-preserving aggregation of all streams; furthermore, we show how ECM-sketches can be exploited for continuous monitoring of sliding-window queries over distributed streams. Our extensive experimental study with two real-life data sets validates our theoretical claims and verifies the effectiveness of our techniques. To the best of our knowledge, ours is the first work to address efficient, guaranteed-error complex query answering over distributed data streams in the sliding-window model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mining Frequent Patterns in Uncertain and Relational Data Streams using the Landmark Windows

Todays, in many modern applications, we search for frequent and repeating patterns in the analyzed data sets. In this search, we look for patterns that frequently appear in data set and mark them as frequent patterns to enable users to make decisions based on these discoveries. Most algorithms presented in the context of data stream mining and frequent pattern detection, work either on uncertai...

متن کامل

Querying Sliding Windows Over Online Data Streams

A data stream is a real-time, continuous, ordered sequence of items generated by sources such as sensor networks, Internet traffic flow, credit card transaction logs, and on-line financial tickers. Processing continuous queries over data streams introduces a number of research problems, one of which concerns evaluating queries over sliding windows defined on the inputs. In this paper, we descri...

متن کامل

Querying Regular Languages over Sliding Windows

We study the space complexity of querying regular languages over data streams in the sliding window model. The algorithm has to answer at any point of time whether the content of the sliding window belongs to a fixed regular language. A trichotomy is shown: For every regular language the optimal space requirement is either in Θ(n), Θ(logn), or constant, where n is the size of the sliding window...

متن کامل

Incremental Computation Of Aggregate Operators Over Sliding Windows

Sliding Window is the most popular data model in processing data streams as it captures finite and relevant subset of an infinite stream. This paper studies different Mathematical operators used for querying and mining of data streams. The focus of our study is on operators, operating on the whole data set. These are termed as blocking operators. We have classified these operators according to ...

متن کامل

Approximate Range Querying over Sliding Windows

In the context of Knowledge Discovery in Databases, data reduction is a pre-processing step delivering succinct yet meaningful data to sequent stages. If the target of mining are data streams, then it is crucial to suitably reduce them, since often analyses on such data require multiple scans. In this chapter, we propose a histogram-based approach to reducing sliding windows supporting approxim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PVLDB

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2012